9.2: Inscribed angle (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    23634
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We say that a triangle is inscribed in the circle \(\Gamma\) if all its vertices lie on \(\Gamma\).

    Theorem \(\PageIndex{1}\)

    Let \(\Gamma\) be a circle with the center \(O\), and \(X, Y\) be two distinct points on \(\Gamma\). Then \(\triangle XPY\) is inscribed in \(\Gamma\) if and only if

    \[2 \cdot \measuredangle XPY \equiv \measuredangle XOY.\]

    Equivalently, if and only if

    \(\measuredangle XPY \equiv \dfrac{1}{2} \cdot \measuredangle XOY\) or \(\measuredangle XPY \equiv \pi + \dfrac{1}{2} \cdot \measuredangle XOY.\)

    Proof

    9.2: Inscribed angle (2)9.2: Inscribed angle (3)9.2: Inscribed angle (4)

    the "only if" part. Let \((PQ)\) be the tangent line to \(\Gamma\) at \(P\). By Theorem 9.1.1,

    \(2 \cdot \measuredangle QPX \equiv \measuredangle POX\), \(2 \cdot \measuredangle QPY \equiv \measuredangle POY.\)

    Subtracting one identity from the other, we get 9.2.1.

    "If" part. Assume that 9.2.1 holds for some \(P \not\in \Gamma\). Note that \(\measuredangle XOY \ne 0\). Therefore, \(\measuredangle XPY \ne 0\) nor \(\pi\); that is, \(\measuredangle PXY\) is nondegenerate.

    The line \((PX)\) might be tangent to \(\Gamma\) at the point \(X\) or intersect \(\Gamma\) at another point; in the latter case, suppose that \(P'\) denotes this point of intersection.

    In the first case, by Theorem 9.1, we have

    \(2 \cdot \measuredangle PXY \equiv \measuredangle XOY \equiv 2 \cdot \measuredangle XPY.\)

    Applying the transversal property (Theorem 7.3.1), we get that \((XY) \parallel (PY)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    In the second case, applying the "if" part and that \(P, X\), and \(P'\) lie on one line (see Exercise 2.4.2) we get that

    \(\begin{array} {rcl} {2 \cdot \measuredangle P'PY} & \equiv & {2 \cdot \measuredangle XPY \equiv \measuredangle XOY \equiv} \\ {} & \equiv & {2 \cdot \measuredangle XP'Y \equiv 2 \cdot \measuredangle XP'P.} \end{array}\)

    Again, by transversal property, \((PY) \parallel (P'Y)\), which is impossible since \(\triangle PXY\) is nondegenerate.

    Exercise \(\PageIndex{1}\)

    Let \(X, X', Y\), and \(Y'\) be distinct points on the circle \(\Gamma\). Assume \((XX')\) meets \((YY')\) at a point \(P\). Show that

    (a) \(2 \cdot \measuredangle XPY \equiv \measuredangle XOY + \measuredangle X'OY'\);

    (b) \(\triangle PXY \sim \triangle PY'X'\);

    (c) \(PX \cdot PX' = |OP^2 - r^2|\), where \(O\) is the center and \(r\) is the radius of \(\Gamma\).

    9.2: Inscribed angle (5)

    (The value \(OP^2 - r^2\) is called the power of the point \(P\) with respect to the circle \(\Gamma\). Part (c) of the exercise makes it a useful tool to study circles, but we are not going to consider it further in the book.)

    Hint

    (a) Apply Theorem \(\PageIndex{1}\) for \(\angle XX'Y\) and \(\angle X'YY'\) and Theorem 7.4.1 for \(\triangle PYX'\).

    (b) If \(P\) is inside of \(\Gamma\) then \(P\) lies between \(X\) and \(X'\) and between \(Y\) and \(Y'\) in this case \(\angle XPY\) is vertical to \(\angle X'PY'\). If \(P\) is outside of \(\Gamma\) then \([PX) = [PX')\) and \([PY) = [PY')\). In both cases we have that \(\measuredangle XPY = \measuredangle X'PY'\).

    Applying Theorem \(\PageIndex{1}\) and Exercise 2.4.2, we get that

    \(2 \cdot \measuredangle Y'X'P \equiv 2 \cdot \measuredangle Y'X'X \equiv 2 \cdot \measuredangle Y'YX \equiv 2 \dot \measuredangle PYX.\)

    According to Theorem 3.3.1, \(\angle Y'X'P\) and \(\angle PYX\) have the same sign; therefore \(\measuredangle Y'X'P = \measuredangle PYX\). It remains to apply the AA similarity condition.

    (c) Apply (b) assuming \([YY']\) is the diameter of \(\Gamma\).

    Exercise \(\PageIndex{2}\)

    Three chords \([XX']\), \([YY']\), and \([ZZ']\) of the circle \(\Gamma\) intersect at a point \(P\). Show that

    \(XY' \cdot ZX' \cdot YZ' = X'Y \cdot Z'X \cdot Y'Z.\)

    9.2: Inscribed angle (6)

    Hint

    Apply Exerciese \(\PageIndex{1} b three times.

    Exercise \(\PageIndex{3}\)

    Let \(\Gamma\) be a circumcircle of an acute triangle \(ABC\). Let \(A'\) and \(B'\) denote the second points of intersection of the altitudes from \(A\) and \(B\) with \(\Gamma\). Show that \(\triangle A'B'C\) is isosceles.

    9.2: Inscribed angle (7)

    Hint

    Let \(X\) and \(Y\) be the foot points of the altitudes from \(A\) and \(B\). Suppose that \(O\) denotes the circumcenter.

    By AA condition, \(\triangle AXC \sim \triangle BYC\). Then

    \(\measuredangle A'OC \equiv 2 \cdot \measuredangle A'AC \equiv - 2 \cdot \measuredangle B'BC \equiv - \measuredangle B'OC.\)

    By SAS, \(\triangle A'OC \cong \triangle B'OC\). Therefore, \(A'C = B'C\).

    Exercise \(\PageIndex{4}\)

    Let \([XY]\) and \([X'Y']\) be two parallel chords of a circle. Show that \(XX' = YY'\).

    Exercise \(\PageIndex{5}\)

    Watch “Why is pi here? And why is it squared? A geo- metric answer to the Basel problem” by Grant Sanderson. (It is available on YouTube.)

    Prepare one question.

    9.2: Inscribed angle (2024)

    References

    Top Articles
    Let's Discuss the Four Types of Introversion, Shall We?
    [1.12.X] Orbital Survey Plus v2.3.6
    Lesson 10 Homework 5.3
    Fone Tech Cleveland Ms
    Subject Guides: Business: Exchange Rates: Historical Foreign Exchange Rate
    Craigslist Holland Mi Pets
    Wowhead Filling The Cages
    Selinas Gold Full Movie Netflix
    What Is Flipping Straights Ted Lasso
    Anchor Martha MacCallum Talks Her 20-Year Journey With FOX News and How She Stays Grounded (EXCLUSIVE)
    Dealer 360 Login Generac
    At 25 Years, Understanding The Longevity Of Craigslist
    Best Charter Schools Tampa
    All classes in Pathfinder: Wrath of the Righteous
    The Center Breakfast, Lunch & Snack Menus September 2024
    Lyons Prismhr
    Weldmotor Vehicle.com
    Get Got Lyrics
    How to Sign Out of Microsoft Outlook: Step-by-Step Guide - Solve Your Tech
    Chula Vista Tv Listings
    Highplainsobserverperryton
    Tethrd Coupon Code The Hunting Public
    Perugino's Deli Menu
    O'reilly's Eastman Georgia
    Wirrig Pavilion Seating Chart
    Acb Message Board Yahoo
    Cambria County Most Wanted 2022
    Aunt Nettes Menu
    855-392-7812
    20 of the Best Restaurants in Moscow, Russia by a Local
    Koinonikos Tourismos
    Februarycash2023
    Cece Rose Facial
    Craigslist Hart Mi
    Rwby Crossover Fanfiction Archive
    Sayre Australian Shepherds
    Bulk Amateur 51 Girls Statewins Leak – BASL058
    Saw X Showtimes Near Stone Theatres Sun Valley 14 Cinemas
    Bible Gateway Lookup
    Splunk Stats Count By Hour
    Armored Beacon Feh
    Waffle House Gift Card Cvs
    Johnnie Robinson Auto Sales
    Obituary Sidney Loving
    Botw Royal Guard
    Antonin Balthazar Lévy
    Used Cars For Sale in Pretoria | Quality Pre-Owned Cars | Citton Cars
    Houses For Sale 180 000
    Ucf Cost Calculator
    Mt Sinai Walk In Clinic
    Costco Gas Price Pembroke Pines
    9372034886
    Latest Posts
    Article information

    Author: Geoffrey Lueilwitz

    Last Updated:

    Views: 5926

    Rating: 5 / 5 (60 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Geoffrey Lueilwitz

    Birthday: 1997-03-23

    Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

    Phone: +13408645881558

    Job: Global Representative

    Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

    Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.